
Rule-Based On-the-fly Web Spambot Detection Using
Action Strings

Pedram Hayati
Anti Spam Research Lab

Digital Ecosystems & Business
Intelligence Institute, Curtin Business

School, Curtin University, Perth,
Western Australia, Australia

p.hayati@curtin.edu.au

Vidyasagar Potdar
Anti Spam Research Lab

Digital Ecosystems & Business
Intelligence Institute, Curtin Business

School, Curtin University, Perth,
Western Australia, Australia

v.potdar@curtin.edu.au

William F. Smyth
Algorithms Research Group,

Department of Computing & Software

McMaster University, Hamilton,
Ontario, Canada L8S 4K1

smyth@mcmaster.ca¹

 Alex Talevski

Anti Spam Research Lab

Digital Ecosystems & Business
Intelligence Institute, Curtin Business

School, Curtin University, Perth,
Western Australia, Australia

a.talevski@curtin.edu.au

ABSTRACT
Web spambots are a new type of internet robot that spread spam
content through Web 2.0 applications like online discussion
boards, blogs, wikis, social networking platforms etc. These
robots are intelligently designed to act like humans in order to
fool safeguards and other users. Such spam content not only
wastes valuable resources and time but also may mislead users
with unsolicited content. Spam content typically intends to
misinform users (scams), generate traffic, make sales
(marketing/advertising), and occasionally compromise parties,
people or systems by spreading spyware or malwares.

Current countermeasures do not effectively identify and prevent
web spambots. Proactive measures to deter spambots from
entering a site are limited to question / response scenarios. The
remaining efforts then focus on spam content identification as a
passive activity. Spammers have evolved their techniques to
bypass existing anti-spam filters.

In this paper, we describe a rule-based web usage behaviour
action string that can be analysed using Trie data structures to
detect web spambots. Our experimental results show the proposed
system is successful for on-the-fly classification of web spambots
hence eliminating spam in web 2.0 applications.

1. INTRODUCTION
A fake profile in an online communities, an unsolicited comment
in blog, a commercial unwelcome thread in an online discussion
boards etc are example of new form of spamming techniques
called spam 2.0 [1, 2]. Spam 2.0 offers a far more attractive

proposition for spammers as compared to traditional spam
specifically email spam.

Spammers can discover web 2.0 applications and use automated
tools to distribute spam information that is targeted at a
demographic of their choice with very little resistance. A single
spam 2.0 attack may reach many targeted and domain specific
users and online messages typically cannot be deleted by regular
users and persist until an administrator deals with them often
impacting many users in the meantime. 

Spam 2.0 posts also have a parasitic nature. They may exist on
legitimate and often official websites. If such information persists,
the trust in such pages is diminished, spam is effectively
promoted by trusted sources, many users can be mislead or lead to
scams and computer malware and such legitimate sites may be
blacklisted which then deprives all others of legitimate content.
As a result of the success and impact rates of spam 2.0, it is far
more popular amongst spammers and has far greater negative
socio-economic impact.

Such spamming techniques promote the use of Web Spambots (or
simply spambots): a web crawler that navigates the World Wide
Web with the sole purpose of planting unsolicited content on
external websites. To date, as Web 2.0 platforms are getting more
prevalent, spam 2.0 are becoming more and more widespread. In
order to avoid being spuriously used in this way (and to eliminate
the clutter and wasted time created by spambots), websites seek
tools to recognize and deter spambots as they arrive. Usually the
tools used for this purpose are based on challenge-response
techniques, such as Completely Automated Public Turing test to

¹ The work of the third author was supported in part by the
Natural Sciences & Engineering Research Council of Canada.

CEAS 2010 – Seventh annual Collaboration, Electronic messaging,
Anti-Abuse and Spam Conference, July 13-14, 2010, Redmond,
Washington, US

tell Computers and Human Apart (CAPTCHA), a well-known
technique typically in the form of an image used to block web
crawlers access to a website [3]. However such techniques are
about to expire as it decreases human users’ convenience and
computers are getting more and more powerful day by day [2, 4,
5].

In this paper we propose a rule-based combinatorial approach that
distinguishes automatically between spambots and regular human
users based on their usage patterns:

� Introduce the idea of using web usage behaviour to
investigate spambots behaviour on the Web,

� Propose a new concept – Action Strings, a feature set
extracted from web usage behaviour to model spam users vs.
human users behaviour,

� Illustrate a novel rule-based classifier using Trie structure [6-
8] for fast and on-the-fly spambot detection,

Here we describe the experience with a prototype system
developed by us. In the next section we discuss about two major
concepts – web usage data and trie structure that we used in our
proposed system

2. BACKGROUND
2.1 Web Usage Data
Users browsing websites navigate through web objects such as
web pages, image, files, documents etc. Such data can be
recorded and later mined to extract valuable information [9]. This
tracking data is referred to as web usage data. Web usage data has
been widely employed in many studies to understand visitor
browsing patterns, make personalised websites, improve web
performance and to implement decision support and
recommendation systems [10] [11]. Web usage data may contain
the following fields:

� The visited URL,

� The referrer URL,

� Timestamp,

� IP address,

� Browser/Operating System identity.

In our work, we associate two additional attributes to each entry –
a unique session identity (session ID) and a user account name of
a user who makes a request. The former makes it possible to track
a user while the user is visiting a website, while the latter includes
their username in each record to make it possible to track user
activities over a period of time.

2.2 Trie
A trie structure is a way to store and retrieve information. Its main
advantages over other techniques are: ease of updating and
handling, shorter access time, and removing redundancies in the
data structure [6]. A trie is in the form of a tree structure where
each node contains the value of the key it is associated with.

In this paper we construct a trie structure which consists of human
and spambot behaviour patterns. The trie gives fast on-the-fly
pattern matching ability and we use that for spambot pattern
detection.

3. PROBLEM
To set the scene for this paper, we begin with a brief overview of
the problems in spam 2.0 and spambot detection. A number of
solutions have been proposed to classify spam in web 2.0
environments such as: opinion spam detection [12], spam in social
networks [13-15], spam in video sharing websites [1, 16]. Most of
these solutions have focussed on one particular form of spam. By
extracting features from the content of spam 2.0, such techniques
try to make spam content separate from legitimate content.
However most of them did not come up with satisfactory
classification results. Hence, this leads us to investigate different
approaches to identify spam 2.0.

This research continues in line with our previous work on
combating spam 2.0 [2]. Our main idea is to actively investigate
spambot – as an origin of spam 2.0 instead of seeking to
discriminate attributes inside spam content.

The concept of spambot identification has not been investigated
thoroughly. Hence, we first provide a formal definition for this
problem.

Similar to the spam classification problem [17] spambot detection
can be formalised as a binary classification problem as follows

},...,,{ ||21 UuuuU  (1)

Where U is set of users visiting a website, iu is the ith user in a

set.

},{ sh ccC  (2)

Where C refers to the overall set of users, hc refers to human

user class and sc refers to spambot user class. the binary

classification),(ji cu is

}1,0{:),(CUcu ji (3)

Where



 


otherwise

cu
cu si

ji 0

1
),(

(4)

Since in spambot detection problem each iu belongs to one and

only one class, the decision function can be simplified as

}1,0{:)(Uu spami .

4. HUMAN BEHAVIOUR VS. SPAMBOT
BEHAVIOUR
The main assumption of our proposed method is that human web
usage behaviour is intrinsically different from spambot behaviour.
The reason is that spambots have different intentions. Spambots
visit the website mainly to spread spam content rather than to
consume the content. Hence by investigating and mining web
usage data it is possible to distinguish spambots from human
users. This viewpoint is different from previous studies which
have focused on content and meta-content based features [1].

(a) Spambot HTTP header requests

(b) Human HTTP header requests

Figure 1. Series of spambot http requests (a) vs. human http
requests (b) in an online forum.

Figure 1 illustrates a simple series of HTTP requests sent from
both humans and spambots to submit new content to an online
forum. Each entry consists of an IP address, timestamp, request
method, the requested URL, the response status code, the referrer
URL and browser identity. There are some obvious differences
between spambot and human requests. For example, the human’s
sequence of requests is more expected or on average, spambot
sessions last for some seconds while human sessions last for 5
minutes etc. This factor shows that spambots follow pre-
programmed and optimised procedures. Such key differences in
web usage behaviour can be utilised to distinguish humans and
spambots.

5. ACTION STRINGS
In order to model web usage data into a behavioural model, we
propose an action as a set of user efforts to achieve certain
purposes (E.q. 5). For example, in an online forum, in order to
create a new user account, the user needs to navigate to the
registration page, complete the registration form and submit this
information. This procedure can be formulated as “Register a new
user account” action. Actions abstract web usage data. Actions
can be a suitable discriminative feature to model user behaviour
and can also be extendible to many other Web 2.0 platforms.

Given a set of webpages },...,,{ 21 WwwwW  , A is

defined as a set of Actions, such that

WklwwWaaA klii  ,1}},...,{{}{

(5)

Respectively is is defined as

AjTias ji  1;1)((6)

is
refers to a sequence of actions called Action Strings, performed

in session i and T is total number of sessions.

6. RULE-BASED ON-THE-FLY SPAMBOT
DETECTION METHOD
Figure 2 provides an overview of the monitoring strategy in
algorithmic form. Each user (u) has multiple sessions and each

session contains a series of performed actions (is
). For every

new incoming u our algorithm goes down through the trie to find
matching nodes. If the probability for that specific action string

(1-)(iH sP) is higher than a given threshold, our algorithm

classifies the incoming u as a spambot.

Figure 2. Overview of user monitoring strategy

6.1 Framework
We propose a rule-based on-the-fly spambot detection framework
by using the trie data structure. Our framework consists of five
steps as follows:

6.1.1. Step1: Monitoring web usage data. Track web
usage data and the navigation stream. For each incoming HTTP

for every new user u do

location ← root of trie

for every action i do

location ← (location, i)

)(iH sP ← eval(location)

if 1−)(iH sP > threshold then

zap(u)

until u exits

111.111.111.111 - - [15/Aug/2009:07:05:10 +0800] "GET
/forum/index.php HTTP/1.0" 200 60 "http://example.com/"
"Mozilla/5.0 (Windows; U; Windows NT 5.1; en-GB;
rv:1.9.0.13) Gecko/2009073022 Firefox/3.0.13 (.NET
CLR 3.5.30729)"

111.111.111.111 - - [15/Aug/2009:07:06:12 +0800] "GET
/forum/index.php?board=1 HTTP/1.0" 200 6248
"http://example.com/forum/index.php" "Mozilla/5.0
(Windows; U; Windows NT 5.1; en-GB; rv:1.9.0.13)
Gecko/2009073022 Firefox/3.0.13 (.NET CLR
3.5.30729)"

111.111.111.111 - - [15/Aug/2009:07:08:32 +0800] "GET
/forum/index.php?action=post;board=1 HTTP/1.0" 200
7852 "http://example.com/forum/index.php?board=1"
"Mozilla/5.0 (Windows; U; Windows NT 5.1; en-GB;
rv:1.9.0.13) Gecko/2009073022 Firefox/3.0.13 (.NET
CLR 3.5.30729)"

111.111.111.111 - - [15/Aug/2009:07:10:27 +0800] "GET
/forum/index.php?topic=1397 HTTP/1.0" 200 524
"http://example.com/forum/index.php?
action=post;board=1" "Mozilla/5.0 (Windows; U;
Windows NT 5.1; en-GB; rv:1.9.0.13) Gecko/2009073022
Firefox/3.0.13 (.NET CLR 3.5.30729)"

123.123.123.123 - - [10/Jul/2009:00:19:25 +0800] "GET
/forum/index.php?action=post;board=1 HTTP/1.0" 200
7852
"http://example.com/forum/index.php?action=post;board=
1" "Opera/9.0 (Windows NT 5.1; U; en)"

123.123.123.123 - - [10/Jul/2009:00:19:30 +0800] "GET
/forum/index.php?board=1 HTTP/1.0" 200 6248
"http://example.com/forum/index.php?board=1"
"Opera/9.0 (Windows NT 5.1; U; en)"

request, IP address, visited URL, referrer URL, browser identity,
timestamp, session ID and user account name are tracked.

6.1.2. Step2: Data cleaning and preparation. Once
data is aggregated through Step 1, it needs to be cleansed of
irrelevant information such as visitors who did not create a user
account in the system. Next, data needs to be grouped into
meaningful user navigation clusters. This task is known as
Transaction Identification [9]. As discussed in Section 2.1, we
accompany each tracking record with a unique session ID. Each
session ID can assist us to track a user's navigation. In our
proposed framework we group data based on session IDs.
Therefore, requests made by a user in a single visit are clearly
identifiable. For example, a user may visit a system three times in
a day, each time our proposed framework assigns a unique session
ID to the user. Hence, it is possible to track user requests in each
visit. Moreover, defining transactions at the session level can be
utilised for fast and on-the-fly classification as well as to provide
in-depth insights into the user behaviour.

6.1.3. Step3: Action extractions and formulation.
Table 1 provides a summary of different actions that can be
performed by users in our system. Each action – defined in
Section 5 – comes along with an index key that is used to
formulate a user’s interaction type. Such action lists can be
extended to other web 2.0 applications and can be defined
beforehand for a specific platform. Upon new incoming traffic,
our framework assigns associated actions. Later, by putting each
action index key together, action strings can be build up as
defined in Section 5. Action strings grow over time as the user
performs actions, as well as preserving the order of the action
sequence. As mentioned in Section 4, such a sequence can be
utilised as a discriminative feature to distinguish humans and
spambots

Table1. Action Index Key and Action Lists

Action Key Description
A View root page
B View topics
C Start new topic
D View topic (view their own created topic)
E View user profile information
F Edit user information
G Start new poll
H User authentication (Login)
I Reply to topic
J View recently submitted topics
K View statistic
L Spell checking
M Send private message
N Search
O Get new topics
P Update topic
Q Preview topic

6.1.4. Step4: Building up a trie data structure. Once
the action strings for both human and spambots have been
created, our framework builds a trie data structure based on each
action string. Each trie edge contains an action key index and
each node contains the probability of a specific action string being
either human or spambot. This probability is computed through
E.q 7 and E.q. 8.

)()(

)(
)(

iBiH

iH
iH sfsf

sf
sP


 (7)

)()(

)(
)(

iBiH

iB
iB sfsf

sf
sP


 (8)

where is is an action string,)(iH sf is the frequency of human

action strings that have prefix is .)(iB sf is the frequency of

spambots with prefix is ,)(iH sP is the probability of is being

human and)(iB sP of its being spambot, respectively.

Zero probability means that that particular action string has never
occurred before. For example Figure 3 illustrates a trie data
structure for a set of {ABC, ABCD, ABDE, ABC} action strings
for a human and {ABD, ABD, ABDE} action strings for a
spambot.

Figure 3. Simple trie data structure for set of {ABC, ABCD,
ABDE, ABC} for a human and {ABD, ABD, ABDE} for a
spambot. S and H represent probability of action string

belonging to spambots and humans respectively.

6.1.5. Step5: Classification. New incoming action string

is is validated through trie structure that has been built in Step4.

After validation is can fall into two categories – Match and Not-

Matched. In the former case, our framework looks at)(iH sP

and if ThresholdsP iH )(1 , is would be classified as

spambot. In the latter situation no decision is made; this is a focus
of our future work.

6.2 Performance Measurement
We used Matthews Correlation Coefficient (MCC) method to
measure the performance of our proposed framework [18]. MCC
is one of the best performance measurement methods of binary
classifications especially when the data among two classes of data
is not balanced [19]. It considers true and false positives and
returns a value between -1 and +1. If the return value is closer to
+1 the classification result is better and the decision can be

considered to have greater certainty. However, if the result value
is close to 0 it shows the output of the framework is similar to
random prediction. A result value closer to -1 shows a strong
inverse ability of the classifier. MCC is defined as follows;

))()()((FNTNFPTNFNTPFPTP

FNFPTNTP
MCC




 (9)

In Eq. 9, TP is the number of true positives, TN is the number of
true negatives, FP is the number of false positives and FN is the
number of false negatives.

7. EXPERIMENTAL RESULTS &
DISCUSSION
7.1 Dataset
According to our understanding, there is no publicly available
collection, which contains both human and spambot web usage
data for web 2.0 platform. Hence, we use the same dataset that we
collected in our previous study [2]. We collected human user data
from a human moderated online forum and our spambot data from
our HoneySpam 2.0 project [2], which runs same online forum
application with the same configurations as human forum. Each
entry in our dataset contains visited URL link, referrer URL link,
timestamp, browser identity, and IP address; and it is associated
with session ID and forum username. Our dataset contains 16594
entries consisting of 11039 spambots records and 5555 human
records. In the action extraction and formulation step we come up
with 34 individual actions. We used 2/3 of the data for feeding the
trie in Building up a trie data structure step and use the remaining
1/3 for evaluation purpose.

7.2 On-The-Fly Detection
Our proposed framework has a real-time detection or on the fly
detection feature. The system creates action strings as they
happen, i.e. based on the user webpage behaviour. The aim is to
identify the spam behaviour pattern in the least amount of actions
and then flag that transaction as spambot. We make a window
over test action strings, run our classifier and increase the
window’s size by one character for the next run. Such situations
can simulate real world practices where user action strings grow
over the time.

7.3 Results
We make five random datasets (DS1 to DS5) and run our
framework based on each dataset. The window size ranges from 2
to 10 characters (the length of the longest action string in our
dataset is 10). Additionally we vary the threshold from -0.05 to
0.05. We measure the performance of our framework by using
MCC for each experiment.

Figure 4 illustrates the accuracy of our proposed system for
different window sizes on our five random datasets. The best
accuracy of 96% was achieved on DS1 with window size equal to
or larger than 4 (Table 3), while overall accuracy is 93% over all
datasets. Table 2 summarises average accuracy for our 5 random
datasets.

Figure 4. Accuracy of our proposed system for different
windows size on 5 random datasets. Threshold maintains at

zero for all experiments.

Table2. Average Accuracy of datasets

 DS1 DS2 DS3 DS4 DS5
Accuracy 0.939 0.930 0.926 0.933 0.934

Table3. Accuracy of different windows sizes on our datasets

 DS1 DS2 DS3 DS4 DS5
Len 2 0.727 0.734 0.719 0.732 0.721
Len 3 0.965 0.955 0.952 0.958 0.960
Len 4 0.965 0.955 0.952 0.958 0.960

Len 5+ 0.966 0.955 0.952 0.958 0.960

Figure 5 presents MCC value for different windows sizes. Overall
average MCC on all datasets is 0.744. Table 4 shows the value of
MCC on different datasets. The best MCC value 0.802 was
achieved on DS1 for window size equal to or larger than 5 (Table
5).

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

2 3 4 5 6 7 8 9 10

M
C

C

Window Size

DS5

DS1

DS2

DS3

DS4

Figure 5. MCC values of different window size on 5 random

datasets.

Table4. Average MCC of datasets

 DS1 DS2 DS3 DS4 DS5
MCC 0.762 0.754 0.725 0.729 0.749

Table5. MCC value of different windows size on our datasets

 DS1 DS2 DS3 DS4 DS5
Len 2 0.406 0.430 0.412 0.410 0.405
Len 3 0.802 0.795 0.764 0.769 0.792
Len 4 0.802 0.795 0.764 0.769 0.792

Len 5+ 0.808 0.795 0.764 0.769 0.792

Figure 6 illustrates the performance of our proposed system based
on different threshold at different window sizes (Len2 to Len6).

Figure 6. Performance of system based on different thresholds

for different window size (Len2 to Len6)

The best MCC value of 0.88 is achieved for thresholds between 0
and 0.01 for window size equal to or larger than 4 (Len4 to up).

The performance of our proposed system becomes better as
window size grows. This shows that our system can predict better
as user uses the system over time. However, the performance
remains the same after some windows size. The reason is that our
datasets are randomly selected and not all the action string
combinations are included during Step 4, Building up a trie data
structure. Hence some of the action strings are not included in trie
structure and our system may not be able to match incoming
unseen action string. The same behaviour can be seen in the
accuracy of our results (Fig. 4), where accuracy remains the same
after a certain window size (window size 4).

In Figure 6 it is obvious that moving the threshold toward
negative values increases the number of false-negatives while
moving toward positive values increases the number of false
positives. Therefore, MCC on such values is low.

8. RELATED WORKS
Although the topic of spam has been investigated extensively, to
the best of our knowledge research into spambot detection on
Web 2.0 applications and spam 2.0 is quite young and has not
received comprehensive attention. In this section we review some
of the important literature in this area.

Tan et al. [20] propose a web robot session identification method
based on their navigational patterns. The main assumption in their
proposed system is that web robot navigational patterns such as
session length and set of visited webpages (width and depth of
visited webpages) is different from those of humans. The aim of
their study is on unknown and camouflaged web robots and web
crawlers. Park et al. [21] provide a method for malicious web
robot detection based on types of requests for web objects (e.g.
Cascading Style Sheet files, image files) and existence of
mouse/keyboard activity. However, both the above-mentioned
studies did not focus on spambot detection in web 2.0 applications
where a spambot can mimic human user behaviour.

A proactive spam filtering approach has been proposed by Göbel
et al. [22]. Their proposed framework includes interaction with
spam botnet controllers which can provide the latest spam
messages. Later, it can present a template for current spam runs to
improve spam filtering techniques.

Jindal and Liu [12] study opinion spam in review-gathering
websites. They propose a machine learning approach based on 36
content-based features to differentiate opinion spam from

legitimate opinion. Zinman and Donath [13] attempted to create a
model to distinguish spam profiles from legitimate ones in Social
Networking Services. Their machine learning based method uses
content-based features to do the classification. Benevenuto et al.
[16] provide a mechanism to identify video spammers in online
social network by means of a Support Vector Machine classifier
against content-based features. Heymann et al. [15] survey spam
filtering techniques on the social web and evaluate a spam
filtering technique on a social tagging system. Most of the above
studies focus on one particular type of spam and are limited to the
content attributes of that particular domain. Moreover, they do not
study the source of the spam problem, i. e. the spambot.

Yu et al.[23] and Yiqun et al. [24] categorise spam webpages
from legitimate webpages by employing user web access logs.
Their framework relies on user web access logs as a trusted
source for classifying webpages.

Last but not least, in HoneySpam 2.0 [2] we proposed our web
tracking framework to track spambot data. We develop a
framework for accumulating spambot web usage data rather than
for detecting spambots.

9. CONCLUSION AND FUTURE WORKS
Research in the area of web spambot detection in Web 2.0
platform is quite young. Most of the current studies have focussed
on one particular type of spam rather than a general solution to
block spammers. We aim to detect web spambots as a source of
spam problems on the Web 2.0 platform. Hence our solution can
be extended to other web applications. This paper provides a rule-
based on-the-fly web spambot detection method. Our method is
based on web usage behaviour. We extract discriminative features
called action strings from web usage data to classify spambot vs.
human. We propose action as a set of user efforts to achieve
certain purposes and action strings as a sequence of actions for a
particular user in a transaction. In order to make a real-time and
on-the-fly classification method we build a trie data structure
based on action strings.

We evaluate our method against an online forum and achieved
average accuracy of 93% on spambot detection. We measure the
performance of our system by using MCC. The average MCC
value of 0.744 is achieved on our 5 randomly selected datasets.

As future work, we intend to improve our detection method and
develop an adaptive mechanism to make a real-time update to the
system. Additionally, we will evaluate our proposed method
against other Web 2.0 platforms such as social networking
websites, wikis, and blogs.

10. REFERENCES

[1] P. Hayati and V. Potdar, "Toward Spam 2.0: An
Evaluation of Web 2.0 Anti-Spam Methods " in 7th IEEE
International Conference on Industrial Informatics Cardiff,
Wales, 2009.
[2] P. Hayati, K. Chai, V. Potdar, and A. Talevski,
"HoneySpam 2.0: Profiling Web Spambot Behaviour," in 12th
International Conference on Principles of Practise in Multi-Agent
Systems, Nagoya, Japan, 2009, pp. 335-344.

[3] A. Luis von, B. Manuel, and L. John, "Telling humans
and computers apart automatically," Commun. ACM, vol. 47, pp.
56-60, 2004.
[4] K. Chellapilla and P. Simard, "Using Machine Learning
to Break Visual Human Interaction Proofs (HIPs)," in NIPS, 2004.
[5] Y. Jeff and A. Ahmad Salah El, "Usability of
CAPTCHAs or usability issues in CAPTCHA design," in
Proceedings of the 4th symposium on Usable privacy and security
Pittsburgh, Pennsylvania: ACM, 2008.
[6] F. Edward, "Trie memory," Commun. ACM, vol. 3, pp.
490-499, 1960.
[7] R. M. Donald, "PATRICIA\—Practical
Algorithm To Retrieve Information Coded in Alphanumeric," J.
ACM, vol. 15, pp. 514-534, 1968.
[8] M. Kurt, "Compressed tries," Commun. ACM, vol. 19,
pp. 409-415, 1976.
[9] R. Cooley, B. Mobasher, and J. Srivastava, "Web
mining: information and pattern discovery on the World Wide
Web," in Tools with Artificial Intelligence, 1997. Proceedings.,
Ninth IEEE International Conference on, 1997, pp. 558-567.
[10] C. Aggarwal, J. L. Wolf, and P. S. Yu, "Caching on the
World Wide Web," Knowledge and Data Engineering, IEEE
Transactions on, vol. 11, pp. 94-107, 1999.
[11] J. Dean and M. R. Henzinger, "Finding related pages in
the World Wide Web," Computer Networks, vol. 31, pp. 1467-
1479, 1999.
[12] J. Nitin and L. Bing, "Opinion spam and analysis," in
Proceedings of the international conference on Web search and
web data mining Palo Alto, California, USA: ACM, 2008.
[13] A. Zinman and J. Donath, "Is Britney Spears spam," in
Fourth Conference on Email and Anti-Spam Mountain View,
California, 2007.
[14] S. Webb, J. Caverlee, and C. Pu, "Social Honeypots:
Making Friends with a Spammer Near You," in Proceedings of
the Fifth Conference on Email and Anti-Spam (CEAS 2008),
Mountain View, CA, 2008.

[15] H. Paul, K. Georgia, and G.-M. Hector, "Fighting Spam
on Social Web Sites: A Survey of Approaches and Future
Challenges," IEEE Internet Computing, vol. 11, pp. 36-45, 2007.
[16] F. Benevenuto, T. Rodrigues, V. Almeida, J. Almeida,
C. Zhang, and K. Ross, "Identifying Video Spammers in Online
Social Networks," in AIRWeb ’08 Beijing, China, 2008.
[17] Z. Le, Z. Jingbo, and Y. Tianshun, "An evaluation of
statistical spam filtering techniques," ACM Transactions on Asian
Language Information Processing (TALIP), vol. 3, pp. 243-269,
2004.
[18] B. W. Matthews, "Comparison of the predicted and
observed secondary structure of T4 phage lysozyme," Biochim
Biophys Acta, vol. 405, pp. 442-451, 1975.
[19] P. Baldi, S. Brunak, Y. Chauvin, C. A. F. Andersen, and
H. Nielsen, "Assessing the accuracy of prediction algorithms for
classification: an overview," Bioinformatics, vol. 16, pp. 412-424,
May 1, 2000 2000.
[20] P.-N. Tan and V. Kumar, "Discovery of Web Robot
Sessions Based on their Navigational Patterns," Data Mining and
Knowledge Discovery, vol. 6, pp. 9-35, 2002.
[21] K. Park, V. S. Pai, K.-W. Lee, and S. Calo, "Securing
Web Service by Automatic Robot Detection," USENIX 2006
Annual Technical Conference Refereed Paper, 2006.
[22] G. Jan, bel, H. Thorsten, and T. Philipp, "Towards
Proactive Spam Filtering (Extended Abstract)," in Proceedings of
the 6th International Conference on Detection of Intrusions and
Malware, and Vulnerability Assessment Como, Italy: Springer-
Verlag, 2009.
[23] H. Yu, Y. Liu, M. Zhang, L. Ru, and S. Ma, "Web
Spam Identification with User Browsing Graph," in Information
Retrieval Technology, 2009, pp. 38-49.
[24] L. Yiqun, C. Rongwei, Z. Min, M. Shaoping, and R.
Liyun, "Identifying web spam with user behavior analysis," in
Proceedings of the 4th international workshop on Adversarial
information retrieval on the web Beijing, China: ACM, 2008

