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ABSTRACT 
Web spambots are a new type of internet robot that spread spam 
content through Web 2.0 applications like online discussion 
boards, blogs, wikis, social networking platforms etc. These 
robots are intelligently designed to act like humans in order to 
fool safeguards and other users. Such spam content not only 
wastes valuable resources and time but also may mislead users 
with unsolicited content. Spam content typically intends to 
misinform users (scams), generate traffic, make sales 
(marketing/advertising), and occasionally compromise parties, 
people or systems by spreading spyware or malwares. 

Current countermeasures do not effectively identify and prevent 
web spambots. Proactive measures to deter spambots from 
entering a site are limited to question / response scenarios. The 
remaining efforts then focus on spam content identification as a 
passive activity. Spammers have evolved their techniques to 
bypass existing anti-spam filters.  

In this paper, we describe a rule-based web usage behaviour 
action string that can be analysed using Trie data structures to 
detect web spambots. Our experimental results show the proposed 
system is successful for on-the-fly classification of web spambots 
hence eliminating spam in web 2.0 applications. 

1. INTRODUCTION 
A fake profile in an online communities, an unsolicited comment 
in blog, a commercial unwelcome thread in an online discussion 
boards etc are example of new form of spamming techniques 
called spam 2.0 [1, 2]. Spam 2.0 offers a far more attractive 

proposition for spammers as compared to traditional spam 
specifically email spam.  

Spammers can discover web 2.0 applications and use automated 
tools to distribute spam information that is targeted at a 
demographic of their choice with very little resistance. A single 
spam 2.0 attack may reach many targeted and domain specific 
users and online messages typically cannot be deleted by regular 
users and persist until an administrator deals with them often 
impacting many users in the meantime.  

Spam 2.0 posts also have a parasitic nature. They may exist on 
legitimate and often official websites. If such information persists, 
the trust in such pages is diminished, spam is effectively 
promoted by trusted sources, many users can be mislead or lead to 
scams and computer malware and such legitimate sites may be 
blacklisted which then deprives all others of legitimate content. 
As a result of the success and impact rates of spam 2.0, it is far 
more popular amongst spammers and has far greater negative 
socio-economic impact. 

Such spamming techniques promote the use of Web Spambots (or 
simply spambots): a web crawler that navigates the World Wide 
Web with the sole purpose of planting unsolicited content on 
external websites. To date, as Web 2.0 platforms are getting more 
prevalent, spam 2.0 are becoming more and more widespread. In 
order to avoid being spuriously used in this way (and to eliminate 
the clutter and wasted time created by spambots), websites seek 
tools to recognize and deter spambots as they arrive. Usually the 
tools used for this purpose are based on challenge-response 
techniques, such as Completely Automated Public Turing test to 
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tell Computers and Human Apart (CAPTCHA), a well-known 
technique typically in the form of an image used to block web 
crawlers access to a website [3]. However such techniques are 
about to expire as it decreases human users’ convenience and 
computers are getting more and more powerful day by day [2, 4, 
5]. 

In this paper we propose a rule-based combinatorial approach that 
distinguishes automatically between spambots and regular human 
users based on their usage patterns: 

� Introduce the idea of using web usage behaviour to 
investigate spambots behaviour on the Web, 

� Propose a new concept – Action Strings, a feature set 
extracted from web usage behaviour to model spam users vs. 
human users behaviour, 

� Illustrate a novel rule-based classifier using Trie structure [6-
8]  for fast and on-the-fly spambot detection, 

Here we describe the experience with a prototype system 
developed by us. In the next section we discuss about two major 
concepts – web usage data and trie structure that we used in our 
proposed system 

2. BACKGROUND 
2.1 Web Usage Data 
Users browsing websites navigate through web objects such as 
web pages, image, files, documents etc. Such data can be 
recorded and later mined to extract valuable information [9]. This 
tracking data is referred to as web usage data. Web usage data has 
been widely employed in many studies to understand visitor 
browsing patterns, make personalised websites, improve web 
performance and to implement decision support and 
recommendation systems [10] [11]. Web usage data may contain 
the following fields: 

� The visited URL, 

� The referrer URL, 

� Timestamp, 

� IP address, 

� Browser/Operating System identity. 

In our work, we associate two additional attributes to each entry – 
a unique session identity (session ID) and a user account name of 
a user who makes a request. The former makes it possible to track 
a user while the user is visiting a website, while the latter includes 
their username in each record to make it possible to track user 
activities over a period of time. 

2.2 Trie 
A trie structure is a way to store and retrieve information. Its main 
advantages over other techniques are: ease of updating and 
handling, shorter access time, and removing redundancies in the 
data structure [6]. A trie is in the form of a tree structure where 
each node contains the value of the key it is associated with. 

In this paper we construct a trie structure which consists of human 
and spambot behaviour patterns. The trie gives fast on-the-fly 
pattern matching ability and we use that for spambot pattern 
detection. 

3. PROBLEM 
To set the scene for this paper, we begin with a brief overview of 
the problems in spam 2.0 and spambot detection. A number of 
solutions have been proposed to classify spam in web 2.0 
environments such as: opinion spam detection [12], spam in social 
networks [13-15], spam in video sharing websites [1, 16]. Most of 
these solutions have focussed on one particular form of spam. By 
extracting features from the content of spam 2.0, such techniques 
try to make spam content separate from legitimate content. 
However most of them did not come up with satisfactory 
classification results.  Hence, this leads us to investigate different 
approaches to identify spam 2.0.  

This research continues in line with our previous work on 
combating spam 2.0 [2]. Our main idea is to actively investigate 
spambot – as an origin of spam 2.0 instead of seeking to 
discriminate attributes inside spam content.  

The concept of spambot identification has not been investigated 
thoroughly. Hence, we first provide a formal definition for this 
problem. 

Similar to the spam classification problem [17] spambot detection 
can be formalised as a binary classification problem as follows 
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Where U is set of users visiting a website, iu  is the ith user in a 

set.  

},{ sh ccC   (2) 

Where C refers to the overall set of users, hc refers to human 

user class and sc refers to spambot user class. the binary 

classification ),( ji cu  is 

}1,0{:),( CUcu ji  (3) 

Where 



 


otherwise

cu
cu si

ji 0

1
),(  

(4) 

Since in spambot detection problem each iu belongs to one and 

only one class, the decision function can be simplified as 

}1,0{:)( Uu spami . 

4. HUMAN BEHAVIOUR VS. SPAMBOT 
BEHAVIOUR 
The main assumption of our proposed method is that human web 
usage behaviour is intrinsically different from spambot behaviour. 
The reason is that spambots have different intentions. Spambots 
visit the website mainly to spread spam content rather than to 
consume the content. Hence by investigating and mining web 
usage data it is possible to distinguish spambots from human 
users. This viewpoint is different from previous studies which 
have focused on content and meta-content based features [1]. 

 



 
(a) Spambot HTTP header requests 

 
(b) Human HTTP header requests 

Figure 1. Series of spambot http requests (a) vs. human http 
requests (b) in an online forum. 

Figure 1 illustrates a simple series of HTTP requests sent from 
both humans and spambots to submit new content to an online 
forum. Each entry consists of an IP address, timestamp, request 
method, the requested URL, the response status code, the referrer 
URL and browser identity. There are some obvious differences 
between spambot and human requests. For example, the human’s 
sequence of requests is more expected or on average, spambot 
sessions last for some seconds while human sessions last for 5 
minutes etc. This factor shows that spambots follow pre-
programmed and optimised procedures. Such key differences in 
web usage behaviour can be utilised to distinguish humans and 
spambots. 

5. ACTION STRINGS 
In order to model web usage data into a behavioural model, we 
propose an action as a set of user efforts to achieve certain 
purposes (E.q. 5). For example, in an online forum, in order to 
create a new user account, the user needs to navigate to the 
registration page, complete the registration form and submit this 
information. This procedure can be formulated as “Register a new 
user account” action. Actions abstract web usage data. Actions 
can be a suitable discriminative feature to model user behaviour 
and can also be extendible to many other Web 2.0 platforms. 

Given a set of webpages },...,,{ 21 WwwwW  , A is 

defined as a set of Actions, such that 
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Respectively is  is defined as  

AjTias ji  1;1)(  (6) 

is
refers to a sequence of actions called Action Strings, performed 

in session i  and T is total number of sessions. 

6. RULE-BASED ON-THE-FLY SPAMBOT 
DETECTION METHOD  
Figure 2 provides an overview of the monitoring strategy in 
algorithmic form. Each user (u) has multiple sessions and each 

session contains a series of performed actions ( is
 ). For every 

new incoming u our algorithm goes down through the trie to find 
matching nodes. If the probability for that specific action string 

(1- )( iH sP  ) is higher than a given threshold, our algorithm 

classifies the incoming u as a spambot. 

 

 
 

 

 

Figure 2. Overview of user monitoring strategy 

6.1 Framework 
We propose a rule-based on-the-fly spambot detection framework 
by using the trie data structure. Our framework consists of five 
steps as follows: 

6.1.1. Step1: Monitoring web usage data. Track web 
usage data and the navigation stream. For each incoming HTTP 

for every new user u do 

location ← root of trie 

for every action i do 

location ←  (location, i) 

)( iH sP  ← eval(location) 

if 1− )( iH sP  > threshold then 

zap(u) 

until u exits 

111.111.111.111 - - [15/Aug/2009:07:05:10 +0800] "GET 
/forum/index.php HTTP/1.0" 200 60 "http://example.com/" 
"Mozilla/5.0 (Windows; U; Windows NT 5.1; en-GB; 
rv:1.9.0.13) Gecko/2009073022 Firefox/3.0.13 (.NET 
CLR 3.5.30729)" 

 

111.111.111.111 - - [15/Aug/2009:07:06:12 +0800] "GET 
/forum/index.php?board=1 HTTP/1.0" 200 6248 
"http://example.com/forum/index.php" "Mozilla/5.0 
(Windows; U; Windows NT 5.1; en-GB; rv:1.9.0.13) 
Gecko/2009073022 Firefox/3.0.13 (.NET CLR 
3.5.30729)" 

 

111.111.111.111 - - [15/Aug/2009:07:08:32 +0800] "GET 
/forum/index.php?action=post;board=1 HTTP/1.0" 200 
7852 "http://example.com/forum/index.php?board=1" 
"Mozilla/5.0 (Windows; U; Windows NT 5.1; en-GB; 
rv:1.9.0.13) Gecko/2009073022 Firefox/3.0.13 (.NET 
CLR 3.5.30729)" 

 

111.111.111.111 - - [15/Aug/2009:07:10:27 +0800] "GET 
/forum/index.php?topic=1397 HTTP/1.0" 200 524 
"http://example.com/forum/index.php? 
action=post;board=1" "Mozilla/5.0 (Windows; U; 
Windows NT 5.1; en-GB; rv:1.9.0.13) Gecko/2009073022 
Firefox/3.0.13 (.NET CLR 3.5.30729)" 

123.123.123.123 - - [10/Jul/2009:00:19:25 +0800] "GET 
/forum/index.php?action=post;board=1 HTTP/1.0" 200 
7852 
"http://example.com/forum/index.php?action=post;board=
1" "Opera/9.0 (Windows NT 5.1; U; en)" 

 

123.123.123.123 - - [10/Jul/2009:00:19:30 +0800] "GET 
/forum/index.php?board=1 HTTP/1.0" 200 6248 
"http://example.com/forum/index.php?board=1" 
"Opera/9.0 (Windows NT 5.1; U; en)" 

 



request, IP address, visited URL, referrer URL, browser identity, 
timestamp, session ID and user account name are tracked. 

6.1.2. Step2: Data cleaning and preparation. Once 
data is aggregated through Step 1, it needs to be cleansed of 
irrelevant information such as visitors who did not create a user 
account in the system. Next, data needs to be grouped into 
meaningful user navigation clusters. This task is known as 
Transaction Identification [9]. As discussed in Section 2.1, we 
accompany each tracking record with a unique session ID. Each 
session ID can assist us to track a user's navigation. In our 
proposed framework we group data based on session IDs. 
Therefore, requests made by a user in a single visit are clearly 
identifiable. For example, a user may visit a system three times in 
a day, each time our proposed framework assigns a unique session 
ID to the user. Hence, it is possible to track user requests in each 
visit. Moreover, defining transactions at the session level can be 
utilised for fast and on-the-fly classification as well as to provide 
in-depth insights into the user behaviour. 

6.1.3. Step3: Action extractions and formulation. 
Table 1 provides a summary of different actions that can be 
performed by users in our system. Each action – defined in 
Section 5 – comes along with an index key that is used to 
formulate a user’s interaction type. Such action lists can be 
extended to other web 2.0 applications and can be defined 
beforehand for a specific platform. Upon new incoming traffic, 
our framework assigns associated actions. Later, by putting each 
action index key together, action strings can be build up as 
defined in Section 5. Action strings grow over time as the user 
performs actions, as well as preserving the order of the action 
sequence. As mentioned in Section 4, such a sequence can be 
utilised as a discriminative feature to distinguish humans and 
spambots 

Table1. Action Index Key and Action Lists 

Action Key Description 
A View root page 
B View topics 
C Start new topic 
D View topic (view their own created topic) 
E View user profile information 
F Edit user information 
G Start new poll 
H User authentication (Login) 
I Reply to topic 
J View recently submitted topics 
K View statistic 
L Spell checking 
M Send private message 
N Search 
O Get new topics 
P Update topic 
Q Preview topic 

 
6.1.4. Step4: Building up a trie data structure. Once 
the action strings for both human and spambots have been 
created, our framework builds a trie data structure based on each 
action string. Each trie edge contains an action key index and 
each node contains the probability of a specific action string being 
either human or spambot. This probability is computed through 
E.q 7 and E.q. 8.  

)()(

)(
)(

iBiH

iH
iH sfsf

sf
sP


  (7) 

)()(
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sf
sP


  (8) 

 

where is is an action string, )( iH sf is the frequency of human 

action strings that have prefix is . )( iB sf is the frequency of 

spambots with prefix is , )( iH sP is the probability of is being 

human and )( iB sP of its being spambot, respectively. 

Zero probability means that that particular action string has never 
occurred before. For example Figure 3 illustrates a trie data 
structure for a set of {ABC, ABCD, ABDE, ABC} action strings 
for a human and {ABD, ABD, ABDE} action strings for a 
spambot. 

 

Figure 3. Simple trie data structure for set of {ABC, ABCD, 
ABDE, ABC} for a human and {ABD, ABD, ABDE} for a 
spambot. S and H represent probability of action string 

belonging to spambots and humans respectively. 

 

6.1.5. Step5: Classification. New incoming action string 

is  is validated through trie structure that has been built in Step4. 

After validation is can fall into two categories – Match and Not-

Matched. In the former case, our framework looks at )( iH sP  

and if ThresholdsP iH  )(1  , is would be classified as 

spambot. In the latter situation no decision is made; this is a focus 
of our future work. 

6.2 Performance Measurement 
We used Matthews Correlation Coefficient (MCC) method to 
measure the performance of our proposed framework [18]. MCC 
is one of the best performance measurement methods of binary 
classifications especially when the data among two classes of data 
is not balanced [19]. It considers true and false positives and 
returns a value between -1 and +1. If the return value is closer to 
+1 the classification result is better and the decision can be 



considered to have greater certainty. However, if the result value 
is close to 0 it shows the output of the framework is similar to 
random prediction. A result value closer to -1 shows a strong 
inverse ability of the classifier. MCC is defined as follows; 

))()()(( FNTNFPTNFNTPFPTP

FNFPTNTP
MCC




  (9) 

In Eq. 9, TP is the number of true positives, TN is the number of 
true negatives, FP is the number of false positives and FN is the 
number of false negatives. 

7. EXPERIMENTAL RESULTS & 
DISCUSSION 
7.1 Dataset 
According to our understanding, there is no publicly available 
collection, which contains both human and spambot web usage 
data for web 2.0 platform. Hence, we use the same dataset that we 
collected in our previous study [2]. We collected human user data 
from a human moderated online forum and our spambot data from 
our HoneySpam 2.0 project [2], which runs same online forum 
application with the same configurations as human forum. Each 
entry in our dataset contains visited URL link, referrer URL link, 
timestamp, browser identity, and IP address; and it is associated 
with session ID and forum username. Our dataset contains 16594 
entries consisting of 11039 spambots records and 5555 human 
records. In the action extraction and formulation step we come up 
with 34 individual actions. We used 2/3 of the data for feeding the 
trie in Building up a trie data structure step and use the remaining 
1/3 for evaluation purpose. 

7.2 On-The-Fly Detection 
Our proposed framework has a real-time detection or on the fly 
detection feature. The system creates action strings as they 
happen, i.e. based on the user webpage behaviour. The aim is to 
identify the spam behaviour pattern in the least amount of actions 
and then flag that transaction as spambot. We make a window 
over test action strings, run our classifier and increase the 
window’s size by one character for the next run. Such situations 
can simulate real world practices where user action strings grow 
over the time. 

7.3 Results 
We make five random datasets (DS1 to DS5) and run our 
framework based on each dataset. The window size ranges from 2 
to 10 characters (the length of the longest action string in our 
dataset is 10). Additionally we vary the threshold from -0.05 to 
0.05. We measure the performance of our framework by using 
MCC for each experiment.  

Figure 4 illustrates the accuracy of our proposed system for 
different window sizes on our five random datasets. The best 
accuracy of 96% was achieved on DS1 with window size equal to 
or larger than 4 (Table 3), while overall accuracy is 93% over all 
datasets. Table 2 summarises average accuracy for our 5 random 
datasets. 

 

 

Figure 4. Accuracy of our proposed system for different 
windows size on 5 random datasets. Threshold maintains at 

zero for all experiments. 

Table2. Average Accuracy of datasets 

 DS1 DS2 DS3 DS4 DS5 
Accuracy 0.939 0.930 0.926 0.933 0.934 

Table3. Accuracy of different windows sizes on our datasets 

 DS1 DS2 DS3 DS4 DS5 
Len 2 0.727 0.734 0.719 0.732 0.721 
Len 3 0.965 0.955 0.952 0.958 0.960 
Len 4 0.965 0.955 0.952 0.958 0.960 

Len 5+ 0.966 0.955 0.952 0.958 0.960 

 
Figure 5 presents MCC value for different windows sizes. Overall 
average MCC on all datasets is 0.744. Table 4 shows the value of 
MCC on different datasets. The best MCC value 0.802 was 
achieved on DS1 for window size equal to or larger than 5 (Table 
5). 
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Figure 5. MCC values of different window size on 5 random 

datasets. 

Table4. Average MCC of datasets 

 DS1 DS2 DS3 DS4 DS5 
MCC 0.762 0.754 0.725 0.729 0.749 

Table5. MCC value of different windows size on our datasets 

 DS1 DS2 DS3 DS4 DS5 
Len 2 0.406 0.430 0.412 0.410 0.405 
Len 3 0.802 0.795 0.764 0.769 0.792 
Len 4 0.802 0.795 0.764 0.769 0.792 

Len 5+ 0.808 0.795 0.764 0.769 0.792 

 
Figure 6 illustrates the performance of our proposed system based 
on different threshold at different window sizes (Len2 to Len6).  



  

 
Figure 6. Performance of system based on different thresholds 

for different window size (Len2 to Len6) 
 
The best MCC value of 0.88 is achieved for thresholds between 0 
and 0.01 for window size equal to or larger than 4 (Len4 to up). 

The performance of our proposed system becomes better as 
window size grows. This shows that our system can predict better 
as user uses the system over time. However, the performance 
remains the same after some windows size. The reason is that our 
datasets are randomly selected and not all the action string 
combinations are included during Step 4, Building up a trie data 
structure. Hence some of the action strings are not included in trie 
structure and our system may not be able to match incoming 
unseen action string. The same behaviour can be seen in the 
accuracy of our results (Fig. 4), where accuracy remains the same 
after a certain window size (window size 4).  

In Figure 6 it is obvious that moving the threshold toward 
negative values increases the number of false-negatives while 
moving toward positive values increases the number of false 
positives. Therefore, MCC on such values is low. 

8. RELATED WORKS 
Although the topic of spam has been investigated extensively, to 
the best of our knowledge research into spambot detection on 
Web 2.0 applications and spam 2.0 is quite young and has not 
received comprehensive attention. In this section we review some 
of the important literature in this area. 

Tan et al. [20] propose a web robot session identification method 
based on their navigational patterns. The main assumption in their 
proposed system is that web robot navigational patterns such as 
session length and set of visited webpages (width and depth of 
visited webpages) is different from those of humans. The aim of 
their study is on unknown and camouflaged web robots and web 
crawlers. Park et al. [21] provide a method for malicious web 
robot detection based on types of requests for web objects (e.g. 
Cascading Style Sheet files, image files) and existence of 
mouse/keyboard activity. However, both the above-mentioned 
studies did not focus on spambot detection in web 2.0 applications 
where a spambot can mimic human user behaviour. 

A proactive spam filtering approach has been proposed by Göbel 
et al. [22]. Their proposed framework includes interaction with 
spam botnet controllers which can provide the latest spam 
messages. Later, it can present a template for current spam runs to 
improve spam filtering techniques. 

Jindal and Liu [12] study opinion spam in review-gathering 
websites. They propose a machine learning approach based on 36 
content-based features to differentiate opinion spam from 

legitimate opinion. Zinman and Donath [13] attempted to create a 
model to distinguish spam profiles from legitimate ones in Social 
Networking Services. Their machine learning based method uses 
content-based features to do the classification. Benevenuto et al. 
[16] provide a mechanism to identify video spammers in online 
social network by means of a Support Vector Machine classifier 
against content-based features. Heymann et al. [15] survey spam 
filtering techniques on the social web and evaluate a spam 
filtering technique on a social tagging system. Most of the above 
studies focus on one particular type of spam and are limited to the 
content attributes of that particular domain. Moreover, they do not 
study the source of the spam problem, i. e. the spambot. 

Yu et al.[23] and Yiqun et al. [24] categorise spam webpages 
from legitimate webpages by employing user web access logs. 
Their framework relies on user web access logs as a trusted 
source for classifying webpages. 

Last but not least, in HoneySpam 2.0 [2] we proposed our web 
tracking framework to track spambot data. We develop a 
framework for accumulating spambot web usage data rather than 
for detecting spambots. 

9. CONCLUSION AND FUTURE WORKS 
Research in the area of web spambot detection in Web 2.0 
platform is quite young. Most of the current studies have focussed 
on one particular type of spam rather than a general solution to 
block spammers.  We aim to detect web spambots as a source of 
spam problems on the Web 2.0 platform. Hence our solution can 
be extended to other web applications. This paper provides a rule-
based on-the-fly web spambot detection method. Our method is 
based on web usage behaviour. We extract discriminative features 
called action strings from web usage data to classify spambot vs. 
human. We propose action as a set of user efforts to achieve 
certain purposes and action strings as a sequence of actions for a 
particular user in a transaction. In order to make a real-time and 
on-the-fly classification method we build a trie data structure 
based on action strings.  

We evaluate our method against an online forum and achieved 
average accuracy of 93% on spambot detection. We measure the 
performance of our system by using MCC. The average MCC 
value of 0.744 is achieved on our 5 randomly selected datasets. 

As future work, we intend to improve our detection method and 
develop an adaptive mechanism to make a real-time update to the 
system. Additionally, we will evaluate our proposed method 
against other Web 2.0 platforms such as social networking 
websites, wikis, and blogs. 
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