
Spammer and Hacker, Two Old Friends
Pedram Hayati, Vidyasagar Potdar

Digital Ecosystem and Business Intelligence Institute
Curtin University of Technology

Perth, WA, Australia
pedram.hayati@postgard.curtin.edu.au, v.potdar@curtin.edu.au

Abstract—Spammers1 are always looking for new ways to
bypass filters and spread spam content. Currently, spammers
have not only improved their spam methods but have also moved
towards exploiting software security vulnerabilities in order to
spread their spam content. Spammers use weaknesses inside web
applications to inject their spam content into legitimate websites,
redirect users to their own campaign, misuse web users resources,
and hide their footprints. In this paper, we investigate security
vulnerabilities that are exploited by spammers. We explain these
security vulnerabilities, list their importance and provide a sce-
nario of how spammers can exploit them. Additionally, we discuss
two possible solutions to counter problems by patching and
secure software development. The result of our work highlights
importance of concerning security best-practices in developing
secure software which lack of that would result to demotion of
website popularity, blacklisting of website and lose of users’ trust.

I. INTRODUCTION

Web spam refers to webpages that are created to manipulate
search engines or deceive users [8], [7]. Web spam is defined
as webpages that are created deliberately to trick search engine
into offering unsolicited, redundant and misleading search re-
sult as well as mislead users to visit unwanted and unsolicited
webpages. Spam contents in blogs, wikis, online forums,
comments are example of spam in the web. Web spam has
become a major problem for quality, sustainability, and trust
of content on the Internet. There has been many works done in
existing literature to address spam concerns by developing new
and robust methods for spam detection (finding spam patterns
within content) and spam prevention (identifying and stopping
spammers from entering the system). However, as anti-spam
filters improve to increase their capability to detect spam,
spammers find new ways to bypass anti-spam filters [10]. An
annual report released by Cisco in the December 2008 shows
that nine in ten email are spam [2]. The report indicates that
spam is still a very large problem that has become more and
more difficult to solve. Currently, most techniques that have
been proposed to detect spam is done by finding spam patterns
within content or they attempt increase barriers of entry such
as increasing CPU consumption and the time required to spam
[10]. However, to the best of our knowledge, literature lack
of any explorations concerning how spammers are exploiting
security vulnerabilities in software (e.g. web applications) to
achieve their purposes. For instance, by utilising Trojan horses,
computer viruses and worms, spammers exploit genuine user

1a person who distributes spam content

computers to send unsolicited emails [6]. On the server-side,
spammers abuse websites by manipulating their functionality.
Another report from Cisco shows that over 90% of threats
originate from legitimate domains in 2008 [2]. Google services
(e.g. Google Docs) are exploited by spammers to redirect
users to unsolicited websites [14]. These are examples of
many other legitimate websites that have been compromised
by spammers which indicates that spammers have stepped into
security world. This problem not only makes web hard for
spam detection and prevention but also makes spamming2 a
big security threat for systems [13]. Figure 1 illustrates an
example of a legitimate website that has been exploited by
spammers for keyword stuffing and Figure 2 shows an spam
email sent from a legitimate website resulting of ”abuse of
functionality” vulnerability.

Fig. 1. An attacked blog by spammer

In this paper we identify and analyze security server-side
and client-side vulnerabilities which are exploited by spam-
mers to publish spam content and security risks that spammers
pose to web. We explain these security vulnerabilities, list
their importance and provide a scenario of how spammers
can exploit them. According to our understanding there are
no apparent work done in this domain. The remainder of
the paper is organized as follow. In Section II we attempt
to study spammers and hackers motivation to acquire an
understanding of techniques they may use to achieve their
desired results. A comprehensive identification and analysis of

2the art of sending/publishing spam

Fig. 2. An spam email made by Form-to-Mail script

security vulnerabilities is discussed in Section III. In Section
IV we discuss possible solutions to overcome spam concerns
and we conclude our paper in Section V.

II. SPAMMERS AND HACKERS MOTIVATIONS

In this section we will study the motivations of spammers
and hackers. This makes it easier for us to understand tech-
niques and methods they employ. Although spammers and
hackers sometimes have similar desires, we try to differentiate
these motivations into two categories. We will begin by
evaluating spammer motivations in the next section.

A. Spammer Motivations

According to [10] we can classify spammer motivations into
5 categories:

1) Generating revenue: by advertising products and ser-
vices through emails, blog comments, webpages etc. For
instance, spammers can receive payment from pay-per-
click programs (e.g. Google Adsense).

2) Increasing webpage ranking in search engines result:
by misleading search engine indexing algorithms, spam-
mers’ webpage can achieve a higher ranks in the search
results to route more traffic their campaigns.

3) Product/service promotion: Companies pay spammers to
promote their product and services through bulk email
and/or web advertisements.

4) Stealing information: Users’ personal information is
exploited by spammers in order to publish more user-
specific spam content. For example spammer can get
backdoor access to users computer and run Trojan horses
to steal users’ username and password.

Hacker motivations will be discussed in the next section along
with their similarities to spammer motivations.

B. Hackers Motivations

There is a large amount of existing research focused towards
studying hackers’ motivations [11]. Among many motivations,
the main motivations for hacker activities are:

1) Greed,
2) Revenge,
3) Challenge,
4) Boredom,
5) and Opportunity

which are basically psychological motivations [11], but there
are other motivations in the literature that are similar to
spammers motivation discussed in previous section. These
motivations include:

1) Stealing users information, hackers are always looking
for new ways to break into the systems and steal user
information [13].

2) Testing and widespread propagation of malicious codes,
the more victims they found for hosting their codes
the better results the can get to refine their codes and
techniques for future usages [11][17].

3) Hosting malicious bots, nowadays, hackers’ attacks do
not happen from one place. They spread their malicious
bots (e.g. Botnet) and utilise them for concerted attack
such as distributed-denial-of-service (DDoS) [6].

These similarities make the environment beneficial for
spammers to step into the hacker world in order to reach their
desires. Therefore, spammers are seen to have utilise hacker
techniques to

1) send spam emails,
2) hide their footprint to bypass filters (e.g.: blacklisting),
3) spread their malicious codes for performing mass attacks

in future [6],
4) steal users’ private information (e.g.: email account

username and password),
5) and inject malicious code in legitimate websites.

In the next chapter we identify and analyzed these techniques
in addition to discussing how spammers can exploit them.

III. SPAM AND SOFTWARE SECURITY VULNERABILITIES

Spam not only annoys users and wastes their time but
also poses as a security risk on businesses [17][13]. In this
section we study security vulnerabilities that are exploited by
spammers in order to reach their purposes. We have classified
security vulnerabilities into two categories, server-side and
client-side. The former refers to security weaknesses that exist
on web servers and web applications (e.g. SQL Injection,
Directory listing etc) while the latter refers to vulnerabilities
on user computers (e.g. Remote-Code Execution etc).

A. Server Side Vulnerabilities

In this section we list and analyze server-side vulnerabilities
that are utilised by spammers. We classify each security
vulnerability into three parts - Vulnerability explanation, im-
portance and sample scenario of how a spammer can use the
vulnerability.

1) Cross-Site Scripting: Cross-Site Scripting or XSS is
a technique used by attacker in order to inject malicious
code inside a website which later would be executed in
users’ browsers [3]. Attackers are able to hijack sensitive

user information (e.g. cookies, sessions etc), redirect users
to different websites, and perform other malicious activity
on users system. Spammers can utilised this vulnerability to
redirect users to their own fraudulent web sites (e.g. phishing
attack).
A security report on Microsoft Outlook Web Access login panel
published in 2005 allowed an attacker to redirect users to other
locations for phishing purposes [5]. A sample scenario for this
attack is describe as follows. An attacker sends a message to a
genuine user with a URL to a users trusted domain. This URL
contains malicious code and because the URL is known and
trusted by user, he/she would navigate to the URL and enter
their login credentials which would then execute the attacker’s
malicious code. The malicious code can redirect user to other
websites.

2) Content Spoofing: In Content-Spoofing attackers inject
their content into user-trused legitimate website [3] so the
injected content would be trusted by genuine users. Spammers
can trick users by putting their own content (e.g. they can put
their own advertisement links and redirect users to their own
websites).
Most of dynamically created frame-based HTML pages are
vulnerable to this attack. For instance consider the below
code in Figure 3.

Fig. 3. Content Spoofing Vulnerability

the content of iframe source from URL variable content (e.g.
http://www.foo.com/?content=foo.html). Spammers can alter
the URL to http://www.foo.com/?
content=http://www.spammerwebsite.com/phishing.html.
Hence, users would see content of phishing.html inside the
legitimate website.

3) Abuse of Functionality: Abuse of functionality is a group
of vulnerabilities that allow attackers to mislead a website
functionality in different manner. Attacker can abuse functions
of website in order to annoy users and defraud them system
[3]. The vulnerable website can serve spammer as middle-
software, hence spammer are able to hide their own resources.
Some of the Online Contact Forms has a recipient email
address as parameter along with other parameter when user
submit a form. By changing recipient email address spammer
can send email address to other recipient. So this vulnerabil-
ity server as a anonymous and legitimate SMTP server for
spammer [3].

4) Domain Name Service (DNS) Cache Poisoning: This
vulnerability allows attacker to inject false information inside
DNS server. it can be used to route users to IP address with the
same domain name [20]. This vulnerability in another variation
can occur inside Proxy server as well. The only difference is

that in proxy server cache poisoning, an attacker injects fake
content inside the proxy server cache so users would see the
fake content when they navigate to a specific website [18]. By
exploiting this vulnerability spammer can route users to their
fake pages for phishing and advertising campaigns.
A DNS Cache Poisoning vulnerability reported on Microsoft
Windows 2003 and 2000 allowed attackers to inject false
records into the DNS Server [19]. A sample scenario for
spammer could be as follows. A spammer changes the record
for www.hotmail.com inside the DNS server and maps it
with his/her own website IP address. When a user navigates
to www.hotmail.com they would be redirected to spammers
webapage instead of Hotmail.

5) Browser Cache Poisoning: This vulnerability is similar
to DNS cache poisoning. The only difference being that an
attacker can inject fake content into browser cache and it
would last there until browser cache is cleared. Meanwhile,
the user would see poisoned cache whenever he/she requests
that particular website [12]. Spammers can leverage this vul-
nerability to steal user information or perform phishing by
injecting fraudulent pages inside the browsers cache.
A recent vulnerability on Apache server allows attacker to run
XSS or inject arbitrary HTTP headers. By injecting HTTP
headers spammers can perform browser cache poisoning.
Figure 4 demonstrate sample injection input for browser cache
poisoning.

Fig. 4. A sample code for Browser Cache Poisoning

By sending Pragma: no-cache spammer would force the
browser to cache the content that follows Content-Type:
text/html.

B. Client Side Vulnerabilities

In this section we study client side vulnerabilities that are
used by spammers to publish their spam content, redirect users
to their own websites (e.g. pay-per-click programs) and steal
user information. Most of the client-side vulnerabilities can be
categorized as Remote Code Execution (discussed in the next
section) and which can occur inside any software running on
the users computers such as instant messengers, email clients
and web browsers.

1) Remote Code Execution: A remote code execution
vulnerability allows attackers to run remote code inside the
user’s system. Successfully exploiting this vulnerability can
allow an attacker to steals user information and redirects
user to malicious website [4]. Spammers can leverage this
vulnerability inside user web browsers or mail clients to
redirects them to malicious websites (e.g. phishing websites).
Recently a security report on the Opera Web Brower was
published which allowed an attacker to execute remote
arbitrary code on user browsers [16]. Also another security
report on Microsoft Outlook showed that an attacker can
execute remote code by manipulating MailTo URIs [15].

In this section we classify security vulnerabilities and ana-
lyzed them both from a security and spam view points. There
are other areas such as Spywares, hijackware, malwares that
can be used by spammers, however these are out of the scope
of this study.

IV. DISCUSSION

Although this paper presents a problem statement and
does not provide solutions for the problems, this section will
provide a brief discussion on possible solutions that could be
used to this counter problem. We can classify solutions into
two approaches, patching each vulnerability separately and
adopting a secure software development process. The former
approach is so-called ”afterthought” solution which means
that software needs to be patch against each vulnerability
that exists after the software comes on to the market. The
evaluation of software source code is necessary in order
to fix such vulnerabilities. This approach does not provide
comprehensive solution to this problem and has many flaws.
In the latter approach, security concerns are addressed during
software development process.

In [9] a UML model for input validation is proposed.
By validating software input against security rules, software
would be robust against input tampering attacks, remote
command injection, cross site scripting, buffer overflows
etc....
Secure Software Development Methodology is another
solution for addressing security concern in the early stage of
software development [1]. This methodology has 4 phases
for speculating security requirement, design, implementation
and test. Hence, software vulnerabilities would be addressed
in before software becomes available on the market.

V. CONCLUSION

The overall aim of the work presented in this paper is
to study spam concern from different view point. One area
that spammers has focused recently is using security vul-
nerabilities inside software to originate their attacks. Hence
they can hide their digital tracks and bypass current fil-
ters (since attacks originated from legitimate systems). We
identified and analyzed a number of vulnerabilities and the
way spammers exploit these vulnerabilities to achieve their

desires. Additionally, we presented 2 possible solutions to this
problem which include patching each vulnerability separately
and/or using a secure software development process to address
security vulnerabilities inside software. The result of our work
highlights importance of concerning security best-practices in
developing secure software which lack of that would result
to demotion of website popularity, blacklisting of website and
lose of users’ trust

REFERENCES

[1] A. Apvrille and M. Pourzandi. Secure software development
by example. IEEE Security & Privacy, 3(4):10–17, July/August
2005.

[2] Cisco. Cisco 2008 annual security report. World Wide Web.
http://www.cisco.com/go/securityreport, Dec 2008.

[3] W. A. S. Consortium. Threat classification. Word Wide Web.
http://www.webappsec.org/projects/threat/, 2005.

[4] S. Focus. Microsoft internet explorer html objects vari-
ant memory corruption vulnerability. Word Wide Web.
http://www.securityfocus.com/bid/30610/discuss., 2008.

[5] S. Focus. Microsoft outlook web access login form
remote uri redirection vulnerability. Word Wide Web.
http://www.securityfocus.com/bid/12459/info., 2008.

[6] D. Geer. Malicious bots threaten network security. Computer,
38(1):18–20, Jan. 2005.

[7] Z. Gyongyi and H. Garcia-Molina. Web spam taxonomy.
Proceedings of the 1st International Workshop on Adversarial
Information Retrieval on the Web (AIRWeb ’05), 2005.

[8] Z. Gyongyi, H. Garcia-Molina, and J. Pedersen. Combating
web spam with trustrank. Proceedings of the 30th International
Conference on Very Large Databases, 2004.

[9] P. Hayati, N. Jafari, V. Potdar, S. Mohammadrezaie, and
S. Sarenche. Modeling input validation in uml. 19th Australian
Software Engineering Conference (ASWEC2008), 1:664–672,
March 2008.

[10] P. Hayati and V. Potdar. Evaluation of spam detection and
prevention frameworks for email and image spam - a state of art.
The 2nd International Workshop on Applications of Information
Integration in Digital Ecosystems (AIIDE 2008), Novermber
2008.

[11] P. Hoath and T. Mulhall. Hacking: Motivation and deterrence,
part i. Computer Fraud & Security, 1998(4):16–19, 1998.

[12] A. Klein. Browser cache poisoning using
ie and caching servers. Word Wide Web,
http://www.securiteam.com/securityreviews/5OP0M15IKO.html,,
May 2006.

[13] N. Krawetz. Anti-spam solutions and security. Word Wide Web
electronic publication, 2004.

[14] B. Krebs. Spamhaus: Google now 4th most spam-friendly
provider, 2009.

[15] G. MacManus. Microsoft outlook mailto com-
mand line switch injection. Word Wide Web.
http://labs.idefense.com/intelligence/vulnerabilities/display.php?id=673.,
2008.

[16] Opera. Advisory: Specially crafted addresses
can execute arbitrary code. Word Wide Web.
http://www.opera.com/support/search/view/901/., 2008.

[17] M. Reardon. Spam seen as security risk. World Wide Web,
February 2004.

[18] SecurityFocus. Squid proxy malformed http header pars-
ing cache poisoning vulnerability. Word Wide Web,
http://www.securityfocus.com/bid/12433/info,, 2007.

[19] SecurityFocus. Windows dns cache poisoning
by forwarder dns spoofing. Word Wide Web,
http://www.securityfocus.com/archive/1/465882,, 2007.

[20] L. Yuan, K. Kant, P. Mohapatra, and C.-N. Chuah. Dox: A
peer-to-peer antidote for dns cache poisoning attacks. Commu-
nications, 2006. ICC ’06. IEEE International Conference on,
5:2345–2350, June 2006.

